Coupled-Expanding Maps and Matrix shifts

نویسندگان

  • Marcin Kulczycki
  • Piotr Oprocha
چکیده

For an irreducible transition matrix A of size m × m, which is not a permutation, a map f : X → X is said to be strictly A-coupled-expanding if there are nonempty sets V1, . . . , Vm ⊂ X such that the distance between any two of them is positive and f(Vi) ⊃ Vj holds whenever aij = 1. This paper presents two theorems that give sufficient conditions for a strictly A-coupledexpanding map to be chaotic on part of its domain in the sense of, respectively, Auslander and Yorke and Devaney. These results improve on the work of Zhang and Shi [2010]. An example is provided to illustrate that the class of maps the new theorems apply to is significantly wider.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps

We prove that potentials with summable variations on topologically transitive countable Markov shifts have at most one equilibrium measure. We apply this to multidimensional piecewise expanding maps using their Markov diagrams.

متن کامل

Basic Constructions and Examples

4. Examples. 7 4.1. Rigid rotation of a compact group. 7 4.2. Adding machines. 7 4.3. Interval Exchange Maps. 8 4.4. Full shifts and shifts of finite type. 9 4.5. More examples of subshifts. 10 4.5.1. Prouhet-Thue-Morse 11 4.5.2. Chacon system 11 4.5.3. Sturmian systems 11 4.5.4. Toeplitz systems 11 4.5.5. Sofic systems 11 4.5.6. Context-free systems 12 4.5.7. Coded systems 12 4.6. Smooth expan...

متن کامل

Uniqueness of the Srb Measure for Piecewise Expanding Weakly Coupled Map Lattices in Any Dimension

We prove the existence of a unique SRB measure for a wide range of multidimensional weakly coupled map lattices. These include piecewise expanding maps with diffusive coupling.

متن کامل

Coupled Analytic Maps

We consider a lattice of weakly coupled expanding circle maps. We construct, via a cluster expansion of the Perron-Frobenius operator, an invariant measure for these innnite dimensional dynamical systems which exhibits space-time-chaos.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013